CrowdFlower Announces Next Generation Computer Vision Solution

New capabilities enable the creation of large-scale high-quality image training sets for automotive, consumer goods, retail, technology, and medical industries

SAN FRANCISCO, May 17, 2017 /PRNewswire/ — CrowdFlower, the essential human-in-the-loop AI platform for data science teams, announced at the Train AI conference today enhanced capabilities for their Computer Vision solution designed to simplify and speed up the process of annotating images. As a result, businesses can now annotate millions of images in days and weeks, rather than months and years.

CrowdFlower’s platform enables the categorizing, labeling and cleansing of data at scale. As AI systems increasingly enter the mainstream, their usefulness is often defined by the quality of the training data used. While a machine can process complex mathematical equations or structured data in milliseconds, it struggles to make decisions when data is more abstract or subjective, such as images or video. As a result, a machine must be taught and the lesson plan is built using training data.

“The CrowdFlower team has had a front row seat to the emergence of Computer Vision, and we’ve been able to build our platform’s capability based on the needs and requests of our customers as they figure this out,” said Robin Bordoli, CEO of CrowdFlower. “Now, new customers come to us and ask us how they should be labeling images for self-driving cars, or consumer product companies identifying SKUs on retail shelves, or aerial images from drones or satellites, or even cancer cells for medical research. We’ve taken the best practices from working with these industry pioneers to drive that learning back into the platform and how we structure successful customer engagements.”

CrowdFlower’s Computer Vision offering allows data scientists to easily create and execute an image annotation job on the CrowdFlower platform.  The platform supports line annotation, bounding box annotation, and pixel-level annotation, and leverages a combination of human and machine intelligence to create large-scale high-quality image training sets.

“A human-in-the-loop workflow is incredibly important for Computer Vision. With something like autonomous driving, errors in the AI system can be devastating,” said Dr. Barney Pell, Ph.D., AI pioneer and Machine Learning Fellow at the Creative Disruption Lab at the University of Toronto. “The quality of modern AI systems based on machine learning is most directly impacted by the quality and quantity of data. CrowdFlower helps companies improve their machine learning models by continuously providing high-quality training data at scales required for performance. Moreover, training a model is not a one-time thing — new edge cases constantly emerge, and that model needs to learn, otherwise it could fail. This is where humans come in to augment this process — serving as a great example of the theory that humans and machines are better together.”

To learn more about CrowdFlower, and its Computer Vision technology, visit

About CrowdFlower

CrowdFlower is the essential human-in-the-loop AI platform for data science teams. CrowdFlower helps customers generate high-quality customized training data for their machine learning initiatives, or automate a business process with easy-to-deploy models and integrated human-in-the-loop workflows. The CrowdFlower software platform supports a wide range of use cases including self-driving cars, intelligent personal assistants, medical image labeling, content categorization, customer support ticket classification, social data insight, CRM data enrichment, product categorization, and search relevance.

Headquartered in San Francisco and backed by Canvas Venture Fund, Trinity Ventures, and Microsoft Ventures, CrowdFlower serves data science teams at Fortune 500 and fast-growing data-driven organizations across a wide variety of industries. For more information, visit


To view the original version on PR Newswire, visit:

SOURCE CrowdFlower

Related Links